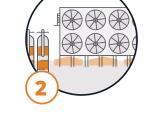


Reduce Embodied Carbon with CarbonCure's Concrete Solution

Information package for owners, developers, architects, structural engineers and contractors

You may already know that buildings are the source of 40% of the world's annual greenhouse gas emissions; but did you know that by 2060, the world's building stock is expected to double? That means we're building a new New York City every month for the next 40 years. On top of that, between now and 2060, embodied carbon levels are predicted to account for almost half of the emissions from the built environment. And since concrete is the most abundant building material, innovation in concrete offers the biggest potential solution for embodied carbon reduction. The embodied carbon challenge has a concrete solution.

Why CarbonCure?


CarbonCure's solution enables the production of the same reliable concrete but with a reduced carbon footprint. The technology injects a precise dosage of carbon dioxide (CO_2) into concrete during mixing where it mineralizes. The mineralized CO_2 improves the concrete's compressive strength, enabling producers to safely reduce cement content in their mixes and achieve further carbon reductions without compromising quality. CO_2 mineralization is compliant with ASTM C 494 Type S and building with CO_2 mineralized concrete can contribute to a project's LEED points, as concrete made with CarbonCure provides a 4-6% reduction to Global Warming Potential (GWP).

CarbonCure's Solution: How it Works

CarbonCure's technology is retrofitted to an existing concrete plant in one visit.

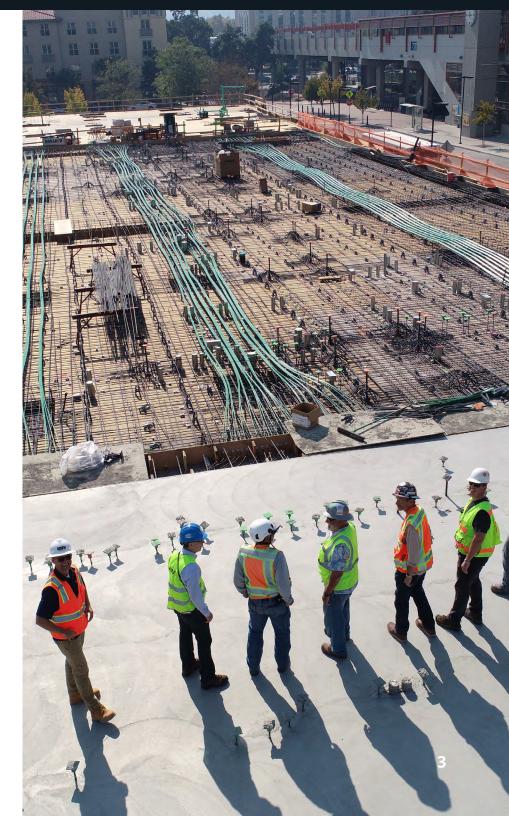
Carbon dioxide (CO₂) gas is primarily sourced as a by-product from industrial processes.

CarbonCure's proprietary delivery system precisely injects the CO₂ into the concrete mix.

Batching is controlled by a simple interface that's integrated with the batch computer.

The purified CO₂ gas is delivered in pressurized

vessels by commercial


Once injected, the CO₂ reacts with cement to form a nano-sized mineral that becomes permanently embedded in the concrete.

Formation of nano-sized mineral

The nanocrystalline carbonate material, as seen in this scanning electron micrograph, accelerates the cement hydration and improves the compressive strength of concrete.

A Win-Win Solution for All

Developers & Owners: Meet Sustainability Goals

By building with low-carbon building materials—such as CO₂ mineralized concrete—building owners and developers are able to reduce embodied carbon in buildings and thereby establish themselves as leaders who prioritize sustainability.

Interested in examples of sustainable projects built with CO₂ mineralized concrete? View CarbonCure's <u>reference projects</u>.

Architects: Reduce GWP

CarbonCure reduces the GWP (CO₂e) of concrete, which contributes to your ability to earn points in the following Materials & Resources LEED credits:

- 1. Building Life-Cycle Impact Reduction
- 2. Building Product Disclosure and Optimization – Environmental Product Declarations

Learn more in the **LEED infosheet**.

Structural Engineers: No Compromises

Millions of cubic yards of CO_2 mineralized concrete have been produced to date, and testing concludes that CO_2 mineralized concrete has a neutral impact on durability properties. Plus, CO_2 mineralization is compliant with ASTM. Ready to get started? Download and review CarbonCure's CO_2 mineralized concrete **spec language inserts.**

Contractors: Same Reliable Quality

Countless studies and field demonstrations have shown that CO₂ has no impact on the fresh or hardened properties of concrete, including colour, texture, durability, workability, pump-ability and finishability. Nor does it impact cycle time or set time. Want to dive deeper? See CarbonCure's detailed **FAQ document** for a summary of a variety of testing results.

Reference Project: 725 Ponce

Atlanta, GA United States

Thomas Concrete delivered 48,000 yd³ (36,700 m³) of concrete made with CarbonCure for every application of this building. As a result, 680 tonnes of CO_2 were avoided; which is equivalent to 888 acres (360 hectares) of trees sequestering CO_2 for a year.

"Uzun+Case, with input from Thomas Concrete, specified CarbonCure to reduce the carbon footprint of 725 Ponce. We're proud to have saved 680 tonnes of CO₂ while maintaining our high-quality standards for concrete."

Rob Weilacher Engineer of Record, Uzun+Case **Building Description:** 360,000 ft² (33,445 m²) mid-rise, mixed-use

Developer: New City Properties

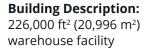
Concrete Supplier: Thomas Concrete

Architect: Cooper Carry

Structural Engineer: Uzun+Case

General Contractor: Brasfield & Gorrie

Completion: 2018


Reference Project: Cedar Creek Distribution Center

Lebanon, TN United States

This tilt-up project just outside of Nashville includes an estimated 8,250 yd³ (6,308 m³) concrete made with CarbonCure supplied by Irving Materials, Inc., saving an estimated 63.5 tonnes of CO_2 . That's equivalent to the CO_2 that 82 acres (33 hectares) of trees would sequester in a year.

"MDH develops and manages traditional industrial real estate properties with an entrepreneurial mindset. We believe that social responsibility as it relates to our communities and environment is a core principle of good business. We're proud to have reduced the carbon footprint of Cedar Creek Distribution Center, and intend to continue to use CarbonCure in future construction across the country."

Arun Singh Chief Financial Officer, MDH Partners

Developer: MDH Partners

Concrete Supplier: Irving Materials, Inc.

Architect: Ware Malcomb

Structural Engineer: Haines Gibson

Concrete Subcontractor: Southeast Concrete Systems

Completion: 2021

Reference Project: Amazon's Second HQ (HQ2)

Arlington, VA United States

Thornton Tomassetti specified CO₂ mineralized concrete as part of its low embodied carbon concrete spec to meet Amazon's sustainability goals. Miller & Long and Vulcan Materials will deliver an estimated 106,555 yd³ (81,467 m³) of CarbonCure concrete; which will save approximately 1,144 tonnes of CO₂.

"We are looking forward to lowering the carbon footprint of many of our buildings by using CarbonCure concrete, including in Amazon's HQ2 building in Virginia."

Kara Hurst Vice President of Sustainability, Amazon space in total over 3 high-rises

Owner: Amazon

Concrete Supplier: Miller & Long, Vulcan Materials

Architect: **ZGF** Architects

Structural Engineer: Thornton Tomassetti

General Contractor: Clark Construction

Completion: Estimated 2022

Build for the Future. Build with CarbonCure.

Available at more than 450 concrete plants worldwide, CarbonCure has been used on thousands of projects ranging from healthcare to higher education, residential developments, and corporate campuses.

For more information about building with CarbonCure concrete, visit **carboncure.com**. To get in touch with a CarbonCure representative, send us an email at **info@carboncure.com** or give us a call at **+1 (902) 448-4100** (Worldwide) or **+1 (844) 407-0032** (North America).

Interested in building with CarbonCure concrete for a project in North Charleston? Contact Port City Concrete at **+1 843-735-5280** or at **portcityconcrete.com** to get the process started.